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A numerical model is developed to predict the wheel/rail dynamic interaction occurring
due to excitation by wheel #ats. A relative displacement excitation is introduced between the
wheel and rail that di!ers from the geometric form of the wheel #at due to the "nite
curvature of the wheel. To allow for the non-linearity of the contact spring and the
possibility of loss of contact between the wheel and the rail, a time-domain model is used to
calculate the interaction force. This includes simpli"ed dynamic models of the wheel and the
track. In order to predict the consequent noise radiation, the wheel/rail interaction force is
transformed into the frequency domain and then converted back to an equivalent roughness
spectrum. This spectrum is used as the input to a linear, frequency-domain model of
wheel/rail interaction to predict the noise. The noise level due to wheel #at excitation is
found to increase with the train speed < at a rate of about 20 log

��
< whereas rolling noise

due to roughness excitation generally increases at about 30 log
��
<. For all speeds up to at

least 200 km/h the noise from typical #ats exceeds that due to normal levels of roughness.
When the wheel load is doubled the predicted impact noise increases by about 3 dB.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

When the brakes are applied to a railway wheel, it can sometimes happen that the wheel
locks and slides along the rail. The reason for this may be poorly adjusted, defective or
frozen brakes or lack of adhesion at the wheel/rail interface, for example, due to leaves on
the rail head. This sliding causes severe wear of the part of the wheel in contact with the rail,
leading to the formation of a &&wheel #at''. Such #ats on the wheel may be typically 50 mm
long but can extend to over 100 mm long. When the wheels subsequently rotate, these
discontinuities on the wheel surface generate large impact forces between the wheel and
track. As a consequence, a periodic impact noise is produced in addition to the usual rolling
noise, which is more random and stationary in character. The large-amplitude dynamic
forces generated by wheel #ats may cause damage to the track, for example, resulting in
fatigue cracks in the rails or sleepers. The high temperatures reached during sliding,
followed by a rapid cooling, lead to the formation of brittle martensite within the steel
beneath the wheel #at. As a result, damage to the wheel can also occur, involving cracking
and spalling, that is the loss of relatively large pieces of metal [1].

A detailed study of the dynamic interaction between a wheel and the track in response to
wheel #ats was carried out by Newton and Clark [2], including both predictions and
measurements. Their model was composed of (1) the vehicle, consisting of three masses
representing the car body, bogie and wheel, plus primary and secondary suspensions,
(2) a non-linear Hertzian contact spring between the wheel and the rail, and (3) the track,
consisting of an in"nite rail on an elastic foundation. In the "eld test, instead of using
0022-460X/02/110115#25 $35.00/0 � 2002 Elsevier Science Ltd.
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a wheel #at, an equivalent indentation was placed in the railhead. This overcomes
the di$culties in locating the position of the #ats and their impacts relative to the
instrumentation on the track. The indentation was intended to correspond to a rolling
wheel with a &&rounded #at'', that is one which has undergone further rolling after formation,
leading to rounding of the corners and extension of the e!ective length. Predictions in
terms of the ratio of the peak contact force to the static wheel load showed good agreement
with the measurements for train speeds up to about 80 km/h. It was shown that the impact
force due to the assumed wheel #at increased with increasing train speed and had a peak
at about 30 km/h, then decreased slightly up to 60 km/h and increased again thereafter.
This observation was consistent with the results of a "eld experiment reported by the AAR
[3]. Although the Newton and Clark work is not related directly to the issue of noise
generation, it provides a basis on which to begin a detailed model of impact noise due to
wheel #ats.

A comprehensive study was carried out by VeH r et al. [4] on estimating impact noise
generation due to wheel and rail discontinuities. They established the concept of a critical
speed, de"ned as the speed above which loss of contact occurs between the wheel and the
rail. They also developed simple formulae for the critical speed, the rail impulse and
the speed dependence of the sound power level for "ve types of discontinuity on the
wheel or rail. Remington [5] extended this work and estimated an equivalent roughness
spectrum corresponding to wheel #ats or rail joints. This allowed the signi"cance of
any wheel #at or rail joint to be assessed in terms of its average noise generation capability,
in comparison with roughness spectra measured on wheels and rails without signi"cant
defects.

The aim of this paper is to explore impact noise generation due to wheel #ats more
precisely and in detail. In order to calculate the wheel/track interaction force, a simpli"ed
track model is developed and combined with the wheel through a non-linear Hertzian
contact sti!ness. From the combined system of the wheel, contact sti!ness and track,
dynamic interactions between the wheel and rail are simulated in the time domain. The
results are then analyzed in the frequency domain and the results are compared for
di!erent types of wheel #at and di!erent train speeds. The concept of an equivalent
roughness spectrum, as in reference [5], is also used in this study. However, here this is not
derived from the wheel #at geometry directly, but from the results of the time-domain
calculation. Thus, it is used as a means of converting the wheel/rail interaction force into an
equivalent roughness input. By using this equivalent roughness input in the Track}Wheel
Interaction Noise Software (TWINS) [6, 7] calculation model, the noise radiation from
both wheel and track is predicted for excitation by wheel #ats having di!erent shapes and
sizes.
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Figure 1. Rolling of a wheel with an idealized #at.



RAILWAY WHEEL FLAT NOISE 117
2. WHEEL FLAT EXCITATION

2.1. EXCITATION BY A NEW FLAT

Figure 1 shows a wheel with a newly formed #at rolling on a rail. The size of a wheel #at
can be measured by its depth d and its length l. For an idealized #at, without any rounding
or wear at its ends, these are related by d+l�/8r where r is the radius of the wheel. If a rigid
wheel with such a #at rolls on a rigid rail without loss of contact, it will pivot about the
&&front'' corner of the #at (A) until the #at is horizontal, and then pivot about the &&rear''
corner (B) until it can again roll on the round part of the wheel, see Figure 1(b). As a result
the wheel centre falls initially, and then rises again.

From geometrical considerations, the vertical movement of the wheel centre, x
�
(positive

downwards) is given by

x
�
"�

r(1!cos �)
r[1!cos(�!�)],

0)�)�/2

�/2(�)�
, (1)

where �"2 cos��[(r!d)/r] is the angle subtended by the #at at the wheel centre and is
dependent on the wheel radius and #at size. x

�
will be termed the wheel centre &&trajectory''.

As the #at depth d is much smaller than the wheel radius r, the angle � is small and
equation (1) can be approximately expressed in terms of the longitudinal position of the
wheel centre, z

�
"r�,

x
�
"�

z�
�
/2r

(l!z
�
)�/2r,

0)z
�
)l/2

l/2(z
�
)l

. (2)

This vertical motion of the wheel centre corresponds to a transient vibration, excited by the
wheel #at. Clearly, the motion x

�
di!ers from the shape of the wheel #at itself, due to the

"nite size of the wheel. A similar e!ect is noted when a random roughness function excites
the wheel/rail system: a modi"cation of this roughness due to the curvature of the wheel has
to be allowed for in determining the actual excitation for rolling noise calculations [8].

Figure 2(a) shows the shape of the wheel with a new #at as well as that of a round wheel,
with the vertical scale exaggerated. The shape of the #at can be expressed as a pro"le height,
x
�
, which is the di!erence between the two curves in Figure 2(a). This is given by
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�
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, 0)z)l, (3)

where z is the circumferential distance along the wheel surface. This is the pro"le that would
be measured by a probe with a small radius of curvature. The pro"le, x

�
, and the wheel

centre trajectory, x
�
, are compared in Figure 2(b) from which it can be seen that the lengths

and depths are both equal, but that the trajectory, x
�
, has a quite di!erent shape to the #at

geometry, x
�
.

As neither the track nor the wheel are rigid, the actual motion of the wheel centre is much
more complicated than that described in equation (2). However, equation (2) also represents
the relative displacement excitation that occurs between a #exible track and wheel, in the
same way as the roughness forms the input for rolling noise calculations [7]. If the train
speed is high, loss of contact may occur, and an impact between the wheel and rail occurs
when the wheel hits the rail again; nevertheless, loss of contact is allowed for within
the contact spring (see section 3) and does not a!ect the form of the input de"ned by
equation (2).
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Figure 2. Wheel #at geometry for new #at of length l
�
, (a) Wheel geometry:** , with #at; ) ) ) ) ) , round wheel;

(b) with wheel curvature removed: ** , pro"le depth, } } }, wheel centre trajectory.
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2.2. EXCITATION BY A ROUNDED FLAT

In practice, due to continued running of the wheel after formation of the #at, the pro"le
becomes rounded at the corners of the #at, whereas the central part will remain unchanged.
The overall length of the rounded #at, l, will be greater than that for a new #at of the same
depth, l

�
. Figure 3(a) shows three such rounded #ats with the same depth, d, but di!erent

lengths, l.
If it can be assumed that these rounded corners can be represented by a quadratic

function with smooth transitions, it is shown in Appendix A that the wheel centre trajectory
will be described by

x
�
+�

4d (z
�
/l)�, 0)z

�
)l/2

4d ((l!z
�
)/l)�, l/2(z

�
)l

. (4)

where l is the length of the rounded #at and d is the depth (which is no longer simply related
to the length l). This expression clearly satis"es the requirements that x

�
"0 at z

�
"0 and

at z
�
"l, and x

�
"d and z

�
"l/2. In fact, equation (2) is a special case of equation (4) for the

case d"l�/8r. Thus, equation (4) can be used for both new #ats and rounded #ats of the
type considered here.

Figure 3 shows the #at pro"le and the wheel centre trajectory for three idealized rounded
#ats. It can be seen that the wheel centre trajectories are identical to that in Figure 2 except
that they are stretched in the z direction.

In practice, a rounded #at will di!er in geometry from the idealized case considered here.
However, in the absence of measured data, equation (4) will be used in this study to
represent the dynamic excitation to the wheel/rail system. For measured #at pro"les
a numerical procedure can be employed to determine the wheel centre trajectory, similar to
that used in reference [9] for roughness.
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Figure 3. Wheel #at geometry for rounded #ats. (a) Wheel shape for various rounded #ats: 00, total length
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�
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�
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�
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�
the length of the equivalent new #at. (b)

Rounded #at, total length l"5l
�
/4: 00, pro"le depth (with wheel curvature removed): } } }, wheel centre

trajectory. (c) Rounded #at, total length l"3l
�
/2, key as (b), (d) rounded #at, total length l"2l

�
, key as (b).
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2.3. EXCITATION BY EQUIVALENT ROUNDED FLAT ON THE RAIL

It is also possible to consider a perfectly round wheel with an indentation on the railhead.
This was used in the "eld tests in reference [2], where the following irregularity pro"le was
introduced onto the railhead for the tests:

x
�
(z)"

d

2 �1!cos 2�
z

l� , (5)
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Figure 4. Wheel #at geometry from equation (5), r"460 mm, d"2)15 mm and l"150 mm:**, irregularity
on the railhead; } }}, wheel centre trajectory.
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where the depth d was 2)15 mm and the overall length l was 150 mm. When a round wheel
rolls over the curve described above, its centre trajectory can be given as

x
�
(z

�
)"x

�
(z)#r(1!cos �), (6a)

where z
�
is the longitudinal position of the wheel centre and z is the longitudinal position of

the contact point on the rail, which are related by

z
�
"z#r sin � (6b)

and where

�+tan �"x�
�
(z)"

�d
l
sin 2�

z

l
. (6c)

These expressions are derived using the same method as given in Appendix A for the
rounded #at of the last section.

Figure 4 shows both the irregularity curve described by equation (5) and the wheel centre
trajectory calculated by using equations (6) for a wheel of radius 0)46 m. From this it is seen
that the size of the wheel modi"es the e!ective input provided by the irregularity (#at) in
a similar way to that found above. However, the dimensions of the irregularity in reference
[2] are such that the wheel can roll over the whole of the rail, i.e., if converted to an
equivalent &&#at'' it would not be #at at its centre but slightly convex. As a result, the contact
point does not jump along the rail, as before, and the trajectory is slightly rounded at its
trough, unlike those in Figure 3.

3. WHEEL/RAIL INTERACTION MODEL

3.1. WHEEL/TRACK INTERACTION MODEL

The wheel/track interaction model is shown schematically in Figure 5. The vehicle system
above the primary suspension is simpli"ed to a static load =. This is justi"ed as the
vibration frequency of interest here is within the audio-frequency range, for example
50}5000 Hz, whilst the natural frequency of the vehicle suspension system is only a few
Hertz, and thus the low-frequency vibration of the vehicle body and bogie is e!ectively
isolated from the high-frequency vibration of the wheel and track. The track model is
composed of an in"nite Timoshenko beam on a continuous spring}mass}spring foundation
representing the rail pads, sleepers and ballast respectively. Damping is introduced by
adding loss factors to the pad and ballast sti!ness. The wheel and rail are connected via
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Figure 5. Wheel/track interaction model.
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a Hertzian contact sti!ness which is non-linear; the contact force is proportional to
the elastic contact de#ection to the power 3/2, provided that loss of contact does not
occur.

As the train speed is much lower than the speed of #exural wave propagation in the rail in
the frequency region of interest, a moving irregularity model can be used to simulate the
wheel/rail interaction [10]. In such a model, the wheel remains stationary on the rail and an
irregularity is e!ectively moved at the train speed between the wheel and rail as a relative
displacement excitation. The source of vibration here is a wheel #at and the moving
irregularity is represented by the &&wheel centre trajectory'', as calculated above.

Since the contact sti!ness is non-linear and loss of contact may occur, it is necessary to
calculate the wheel/rail dynamic interaction in the time domain. To do so, the main
di$culties arise from the track model, because it is required that calculations are performed
over an in"nite spatial extent. On the other hand, the track model is considered to be linear
and its dynamic properties are needed only at the contact position for the calculation of
wheel/rail interactions. Thus, it is possible to develop an equivalent but much simpler
system with only a single input (force) and a single output (displacement) to replace the
track model represented in Figure 5. If this linear system has the same frequency response
function (both amplitude and phase) as the track, it can be mathematically substituted for
the track [11].

3.2. SIMPLIFIED TRACK MODEL

The vibration behaviour of the continuously supported Timoshenko beam model on the
spring}mass}spring layers is similar to a two-degree-of-freedom system at low frequencies,
because here the motion of the beam is strongly dependent on the foundation sti!ness. At
high frequencies, however, the beam vibration is coupled much more weakly to the
foundation and it shows a free-beam like behaviour. In terms of the point receptance, such
a track model can be approximated by a system with the following transfer (frequency
response) function:
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X (s)

F(s)
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b
�
s�#b
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s�#b

�
s#b

�
s�#a

�
s�#a

�
s�#a

�
s#a

�

, (7)

where X(s) and F(s) are the Laplace transforms of the displacement (output) and force
(input) at the contact position respectively. Constant coe$cients a

�
and b

�
are determined by

minimizing the di!erences between H(i�) and the point receptance of the track in the
frequency region of interest.
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Figure 6. Amplitude and phase of the track frequency response function: **, point receptance of the
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TABLE 1

Parameters describing the track vertical dynamics

Young's modulus of rail (N/m�) E 2)1�10��
Shear modulus of rail (N/m�) G 0)77�10��
Density of rail (kg/m�) � 7850
Loss factor of rail �

�
0)02

Cross-section area of rail (m�) A 7)69�10��
Second moment of area (m�) I 30)55�10��
Shear coe$cient � 0)4

Pad sti!ness per unit length of rail (N/m�) k
�

583�10�
Pad loss factor �

�
0)25

Sleeper mass (half, per unit length of rail) (kg/m) m
�

270
Ballast sti!ness per unit length of rail (N/m�) k

�
83)3�10�

Ballast loss factor �
�

1)0

122 T. X. WU AND D. J. THOMPSON
Figure 6 (solid line) shows the point receptance of a track with the parameters described
in Table 1. This represents a track with UIC 60 rail (60 kg/m) on monobloc concrete
sleepers. For a sleeper spacing of 0)6 m the rail pad sti!ness corresponds to 350 MN/m,
which is typical of a moderately soft pad. Also shown in Figure 6 is the frequency response
function of equation (7) (dashed line). It can be seen thatH(i�) is in good agreement with the
point receptance of the in"nite track model in the frequency region 50}5000 Hz. Thus, the
simple model described by equation (7) can be used to replace the in"nite beam model in
terms of its point receptance to calculate the dynamic interaction between the wheel and
track.
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3.3. SIMPLIFIED WHEEL MODEL

The simpli"ed wheel model is composed of two masses, a spring and a viscous damper,
see Figure 7. The larger massM

�
is the unsprung mass of the wheel. The spring k

�
is used to

match the main trough around 460 Hz found in the measurements of the wheel receptance
at the contact point. The damping c

�
is used to reduce the sharpness of this trough. The

small mass m
�
is added, so that the wheel can be coupled with the track via a non-linear

contact sti!ness without mathematical di$culties. As this mass is very small, its in#uence on
the wheel dynamic properties is negligible for frequencies below 10 kHz.



124 T. X. WU AND D. J. THOMPSON
The de"ciency of this simple wheel model is that the high-frequency modes of the wheel
above 1 kHz are neglected. Figure 8 shows the wheel receptances of the simple model
(dashed line) and of a full model based on a "nite element prediction (dotted line). The third
curve will be discussed later. It is seen that there are many resonant peaks and troughs in the
full model which are not present in the simple model. The e!ects on the wheel/rail
interaction of the high-frequency wheel modes, which are ignored due to the use of the
simple model, may be considered using a special treatment, the use of an equivalent
roughness excitation. This will be discussed in section 5.

4. SIMULATION OF WHEEL/RAIL INTERACTION DUE TO WHEEL FLATS

4.1. EQUATION OF MOTION FOR WHEEL/RAIL INTERACTION

The equivalent trackmodel given by equations (7) can be expressed in the time domain by
using a state-space form. Coupling the simpli"ed track model with the wheel model through
a Hertzian contact force, the equations of motion for the wheel/rail interaction can be
written in the state-space form. The equations for the wheel are

xR
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�
, (8a)

where x
�

is the wheel displacement (the displacement of the small mass m
�
), x

�
is the

displacement of the upper mass,= is the static load from the vehicle weight, and f is the
non-linear wheel/rail interaction force. The rail motion is given by the state-space form of
equations (7),
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where x


is the rail displacement, and the interaction force is given by
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where x
�
is the relative displacement excitation due to the wheel #ats, described for example

in equation (4) for the idealized newly formed or rounded #ats. Here x
�
is a function of time,

and so becomes dependent on the train speed.
Simulations of the wheel/rail dynamic interaction have been carried out in the time

domain by using the fourth order Runge}Kutta method with a constant time step.

4.2. COMPARISON WITH MEASURED IMPACT FORCE

Firstly, predictions from equations (8) are compared with the test results from reference
[2] in terms of the ratio of the peak force to the static load, as validation of the above model.
This is shown in Figure 9. The calculation parameters, including those for the track, are
chosen here according to reference [2] and the relative displacement excitation, x

�
, is

calculated by using equations (5) and (6).
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It can be seen that the predictions are very close to the test results for train speeds 0}15
and 80}120 km/h, whereas between 20 and 40 km/h the contact forces are underestimated
by up to about 30%. It should be noted that, although the actual irregularity that was
ground into the rail followed closely the form given in equation (5), some detail di!erences
were present. Altogether, the level of agreement seen in Figure 9 is encouraging. In fact, the
predictions using the simpli"ed model are better than those in reference [2] which were
based on three types of theoretical model for the track (an Euler beam on an elastic
foundation, a Timoshenko beam on an elastic foundation and a discretely supported Euler
beam).

4.3. IMPACT FORCE FOR WHEEL FLATS

Since the model represented in equations (8) is much simpler than the beam model it
replaces, detailed simulations can be performed readily for di!erent wheel #ats and train
speeds. Example results are presented in Figures 10 and 11 in terms of the wheel/rail
interaction force, and the wheel and rail displacements at the contact position. Here, the
static load from the vehicle weight is chosen as="100 kN, the wheel radius r"0)46 m,
the wheel mass M

�
"600 kg and the Hertzian constant C

�
"93)7 GN/m���. The

parameters for the track are given in Table 1.
Figure 10 shows the wheel/rail interaction due to a rounded wheel #at with depth d"2

mm and length l"121 mm. At a train speed of 30 km/h (Figure 10(a)), partial unloading
occurs and the maximum contact force is about 3)5 times as large as the static load. When
the indentation (relative displacement input due to the wheel #at) appears between the
wheel and rail (the sign convention adopted is positive for an indentation and for
downwards displacements), the wheel falls and the rail rises. Since the wheel and rail cannot
immediately follow the indentation due to their inertia, the contact force is therefore partly
unloaded. If the train speed is low, the static load is su$cient to maintain contact between
the wheel and rail. After the relative displacement input reaches its maximum, the contact
force increases rapidly until it reaches its peak. At this stage the relative displacement input
decreases and the rail is forced to move downwards, but the wheel still keeps falling for
a while due to its large inertia.

At a speed of 80 km/h (Figure 10(b)) loss of contact occurs twice. The "rst impact occurs
at about 3)5 ms when the wheel hits the rail again after the "rst loss of contact. Here the
force rises dramatically and the ratio of the peak force to static load is greater than 4. Since
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the momentum of the wheel and rail are changed dramatically by the large impulse during
this "rst impact, the wheel and rail are forced to move apart from each other and a second
loss of contact occurs at about 6 ms. However, the second impact at 7)5 ms is much smaller
than the "rst.

Figure 11 shows the results due to a newly formed wheel #at with depth d"2 mm and
length l"86 mm. At a speed of 30 km/h (Figure 11(a)) slight loss of contact between the
wheel and rail occurs. The maximum impact force here is larger than that for the rounded
#at at 30 km/h, see Figure 10(a). This is because the duration of the displacement excitation
here is shorter than for the rounded #at, while the peak values are the same for both, thus
the accelerations of the wheel and rail are higher, and therefore the impact force is larger. At
a speed of 80 km/h (Figure 11(b)), however, the impact force peak is smaller than that for the
rounded #at. This is also because of the shorter duration of the relative displacement input.
When the wheel contacts the rail again after loss of contact, the remaining displacement
excitation is shorter and smaller compared with the rounded #at case, see Figures 10(b) and
11(b). As a result the impact force here is smaller.

The wheel/rail interaction force is periodic, repeating once every wheel revolution. In
order to convert it to the frequency domain, a discrete Fourier transform is obtained of the
force calculated for a whole wheel revolution. For example at a speed of 30 km/h, the
fundamental frequency of this discrete spectrum is 2)88 Hz; at 120 km/h it is 11)5 Hz. These
results are then converted to one-third octave band spectra in order to facilitate comparison
between the results at di!erent speeds. Figure 12 shows the force spectra produced from new
and rounded #ats of depth 2 mm at four speeds.

It can be seen that the main components of the impact force are in the region
100}1000 Hz. Below about 100 Hz the force spectrum decreases slightly with increasing
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speed. At high frequencies, the level increases considerably as the speed increases due to the
shortening of the impact force pulse. This is more noticeable in the case of the rounded #at
(Figure 12(b)).

These results illustrate that, in general, the impact force caused by wheel #ats is related to
both the shape of the #at and the train speed. The peak forces at di!erent train speeds are
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presented in Figure 13 for the wheel #ats of di!erent types and size. Two #at types are
considered here, based on equation (4): a rounded one (l"121 mm for d"2 mm) and the
newly formed one (l"86 mm for d"2 mm). Two #at depths are chosen for each type:
d"1 and 2 mm. At low speeds the peak forces increase with increasing speed and they are
larger for the newly formed #ats than for the rounded #ats. For a given #at depth the peak
forces are the same for both types of #at considered but these maxima are reached at higher
speed for the rounded #ats. This is a consequence of the fact that equation (4) is used in both
cases. At higher speeds they decrease to slightly lower levels. At high speeds the peak forces
are smaller for the newly formed #ats than for the rounded #ats. It can also be observed
from Figure 13 that the deeper the wheel #ats are, the larger are the impact forces. The
shape of the curves here di!ers from that in Figure 9 due to the di!erence in the excitation
function used.

5. A HYBRID METHOD FOR PREDICTING VIBRATION AND NOISE
FROM WHEEL FLATS

5.1. BACKGROUND

The modelling so far has concentrated on the response of the wheel/rail system at the
contact zone to the excitation from a wheel #at. The vibration so generated will be
transmitted in the form of structural waves through the track which will radiate noise; it will
also excite modes of vibration of the wheel which will radiate noise. Suitable models for the
prediction of structural response and sound radiation of tracks and wheels are available
within the TWINS model [6, 7] which is used for predicting rolling noise due to random
roughness excitation. These models operate in the frequency domain and are normally used
with a linear interaction model, so they cannot be used directly here.

One aspect required in order to predict the noise radiation due to wheel #at excitation, is
that account should be taken of the modal behaviour of the wheel. It is known from studies
of rolling noise that the wheel modes containing a signi"cant radial component of motion at
the contact zone dominate the noise radiation of the wheel/rail system in the frequency
region above about 2 kHz [12]. The inclusion of all such modes in the time-domain
model of wheel/rail interaction has not been considered in the present work, since there
are many such modes and these have very light damping (loss factors around 10��).
Consequently, they have a large time constant and numerical integration of the response
becomes di$cult.
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The proposed method of overcoming this di$culty is referred to here as a hybrid method
and is summarized in Figure 14. The interaction force from a wheel #at is calculated "rst in
the time domain by using the simple wheel model described above. Then, after conversion of
this result to the frequency domain, this is applied as an excitation to a more complete
model of the wheel and rail, as described in more detail in the following sections. However,
as will be explained, it is essential in this hybrid approach that the force is "rst converted to
an equivalent roughness.

5.2. CONTACT FORCE AND EQUIVALENT ROUGHNESS

It is known from rolling noise studies that the interaction force depends on the wheel and
track dynamic properties as well as the roughness input. For a roughness excitation R(�),
at angular frequency �, and considering only interaction in the vertical direction, the
interaction force F(�) is given by

F(�)"!

R(�)

	�(�)#		(�)#	
(�)
, (9)

where 	�, 		 and 	
 are the receptances of the wheel, the contact spring and the rail
respectively.

At a wheel resonance, the denominator is large due to a sharp peak in the wheel
receptance. Consequently, the contact force has a sharp minimum at this frequency, and in
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the wheel response this partially cancels the peak in the wheel receptance. Although the
wheel response spectrum during rolling has peaks corresponding to each resonance of the
wheel, their amplitude and bandwidth are consistent with a much higher level of damping
than is present in the free wheel. This phenomenon is sometimes referred to as &&rolling
damping'' [13].

For interaction in multiple degrees of freedom (d.o.f.), the situation is less straightforward,
with the force component in the lateral direction cancelling that in the vertical direction
rather a simple minimum occurring in the force amplitude at wheel resonances.
Nevertheless, it remains true that, in the vicinity of wheel resonances, the force spectrum
depends strongly on the wheel receptance. The use of a force spectrum calculated from
a di!erent wheel model would prevent this matching of the force spectrum with the wheel
receptance and would produce wheel vibration estimates that are too high, since they
e!ectively ignore the rolling damping.

It follows that the interaction force estimated when using a simple mass/spring model for
the wheel, such as Figure 7, cannot be applied to a modal model of the wheel to calculate its
response. Instead, it is possible to convert the interaction force back to an &&equivalent
roughness'' spectrum*the roughness (relative displacement) input between the wheel and
rail models that would produce the same force spectrum if the contact spring were linear.
This is obtained by calculating the Fourier transform of the interaction force and using
equation (9) in reverse to derive an equivalent roughness spectrum:

R
��
(�)"!F(�)(	�(�)#		(�)#	
(�)). (10)

The question that remains is whether the same equivalent roughness would be obtained if
the high-frequency modal behaviour of the wheel were taken into account. In other words,
are high-frequency oscillations in the contact force induced by wheel modes independent of
the non-linear e!ects, which occur essentially at low frequencies? It will be demonstrated
that this is the case in the following section by using an example.

5.3. SIMULATIONS USING A SIMPLIFIED MODAL WHEEL MODEL

A model is now considered for the wheel which contains a single lightly damped mode;
this comprises three masses, two springs and two dampers, as shown in Figure 15. This
system is referred to as a simpli"ed modal wheel. Its receptance is shown as the solid line in
Figure 8. Comparing this result with that from the full "nite element wheel model, it can be
seen that good agreement is found up to about 2 kHz, including the "rst main, lightly
damped, resonance at high frequency (1688 Hz).

Two methods are now used to determine the response of this wheel to a wheel #at input
and their results compared. The "rst is direct integration in the time domain by using the
Runge}Kutta method, indicated by the right-hand side of Figure 14. The second is the
proposed hybrid method, indicated by the left-hand side of Figure 14. In this, the wheel}rail
contact force is calculated in the time domain using the mass}spring wheel model (Figure 7);
this force is transformed into the frequency domain and then converted back to an
equivalent roughness spectrum,R

��
, by using equation (10); this roughness is then applied in

the frequency domain as the excitation of a wheel}rail system containing the modal wheel of
Figure 15.

Figure 16 shows an example result for a 2 mm new #at, a wheel load of 50 kN and a train
speed of 80 km/h. The graph shows the wheel velocity spectrum at the contact point. The
result from the two methods (direct and hybrid) agree closely. Also shown is the result
initially obtained for the mass/spring wheel model, showing the extent of the correction
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applied by the hybrid method. This correction is small below 1 kHz, but up to 12 dB in the
band containing the resonance.

These calculations have been repeated for loads of 25, 50 and 100 kN, for speeds of 40, 80
and 160 km/h and for new wheel #ats of 1 and 2 mm depth. The di!erences found are shown
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in Figure 17. These di!erences represent the error introduced by using the hybrid method.
This error is very small for frequencies less than 1600 Hz. The band containing the lightly
damped resonance is the only band containing signi"cant error*the error in this band is
found to be less than 2 dB in every case. For a full wheel model containing many modes, it
can be expected that a similar level of agreement will be found in the whole of the modal
region, i.e., above 1)6 kHz.

6. APPLICATION TO NOISE FROM WHEEL FLATS

6.1. IMPACT FORCE IN THE FREQUENCY DOMAIN AND EQUIVALENT ROUGHNESS INPUT

In this section the hybrid method introduced above will be used to calculate the noise
radiated by a wheel and the track due to excitation by a wheel #at. The impact force is
calculated in the time domain as in section 4.3. Figure 12 shows the force spectra produced
from new and rounded #ats of depth 2 mm at four speeds.

By using equation (10) these force spectra can be converted to an equivalent roughness.
This is performed at the discrete frequencies of the periodic force spectrum and the
resulting equivalent roughness spectrum is then converted to one-third octave form.
The equivalent roughness spectra corresponding to the force spectra of Figure 12(a)
are shown in Figure 18. Similar trends can be seen, since the same conversion is applied in
each case.
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In Figure 19 two of these curves are compared with the spectrum of the original relative
displacement input used in each case, i.e., based on equation (4). At a speed of 30 km/h, the
equivalent roughness spectrum is very similar to the spectrum of the original input, even
though from Figure 11(a) it can be seen that loss of contact occurs momentarily and the
maximum contact force is more than four times the nominal load of 100 kN. From this it is
clear that, provided loss of contact does not occur, (1) the equivalent roughness can be taken
directly from the wheel #at geometry, modi"ed to allow for the curvature of the wheel, and
(2) the non-linear contact sti!ness can be replaced by an equivalent linear spring. The latter
conclusion has already been drawn in relation to random roughness inputs [11].
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At 80 km/h, however, the equivalent roughness spectrum is about 3}5 dB lower than the
spectrum of the original input. Figure 11(b) shows that contact is lost twice during the wheel
#at event for a period of between 1 and 2 ms. The "rst loss of contact occurs during the
maximum part of the input irregularity. This means that this part of the irregularity does
not excite the wheel/rail system; the shape of the irregularity during loss of contact is
actually arbitrary and therefore does not contribute to the excitation. It is therefore not
possible to "nd the equivalent roughness without performing the non-linear dynamic
wheel/rail interaction calculations for this case.

6.2. IMPACT NOISE DUE TO WHEEL FLATS

The equivalent roughness spectra derived in the previous section are now used as inputs
to a frequency-domain calculation of wheel/rail noise. For this, the TWINS model [6, 7] is
used. The wheel is represented by its full modal basis in the frequency range up to 6 kHz,
determined from a "nite element model. The track is modelled by a Timoshenko beam
continuously supported on layers of damped springs and mass (see Figure 6). Track
parameters are as listed in Table 1. Wheel/rail interaction is included in both vertical and
lateral directions, the excitation being due to the equivalent roughness acting in the vertical
direction.

Figure 20(a) shows the predicted overall sound power radiated by one wheel and the
associated track vibration for new #ats of 2 mm depth at various speeds. As the speed
increases, the noise increases at frequencies above about 200}400 Hz.

These results may be compared with Figure 20(b) which shows the sound power
predicted for the same wheel/track combination from typical roughness spectra. This
roughness represents cast-iron tread-braked vehicles on good-quality track. For the wheel
#at that has been considered, the noise generated exceeds that due to the tread-braked
wheel roughness at all speeds and in all frequency bands, although the noise due to
roughness increases more rapidly with speed so that at su$ciently higher speeds it can be
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expected to dominate. For a high rail roughness, as found on a corrugated track, the noise
due to roughness has been found to exceed that due to these wheel #ats at 120 km/h.

Figure 21 shows a summary of the variation of the overall A-weighted sound power level
with train speed for various wheel #ats. The predicted noise level due to roughness
excitation increases at a rate of approximately 30 log

��
<, where < is the train speed,

whereas the noise due to #ats is higher but increases at an average of only around
20 log

��
<. This variation with speed indicates that the radiated sound due to wheel #ats

continues to increase with increasing speed, even though loss of contact is occurring. For
example, loss of contact is found to occur for the newly formed 2 mm #at at speeds above 30
km/h and for the rounded 2 mm #at above 50 km/h.
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Below these speeds, as shown in Figure 19, the equivalent roughness closely follows the
original relative displacement input. Figure 22 shows the impact noise predicted from the
original relative displacement input for a range of speeds. Compared to the equivalent
roughness, this gives a higher noise level once loss of contact occurs and its slope is close to
30 log

��
<. For lower speeds, although not predicted, the 30 log

��
< curves can be expected

to apply. According to VeH r et al. [4] the noise was expected to reach a constant level when
loss of contact occurs. The results here, however, which are based on a more comprehensive
model, do not support this. Above the critical speed of VeH r et al., a change occurs in the
slope of noise level with speed, but a constant level is not reached.

All the results presented so far in this section have been for a wheel load of 100 kN. For
lower wheel loads, the likelihood of loss of contact is increased [11]. At low speeds, where
contact is not lost, the equivalent roughness will closely follow the spectrum of the
displacement input (Figure 19) and so the results for di!erent wheel loads will be similar. At
higher speeds, greater loss of contact will occur for lower wheel loads and therefore the noise
level will be lower.

Figure 23 shows the overall A-weighted sound power level plotted against train speed for
a 2 mm rounded #at at three values of wheel load. The corresponding TWINS calculations
include the e!ect of the change in the contact sti!ness. For 25 and 50 kN loads, loss of
contact occurs for all speeds considered, whereas for 100 kN it only occurs at 50 km/h and
above. For most of the results shown here, therefore, the noise level reduces as the wheel
load is reduced. For a halving of the wheel load, the noise level due to the #at is reduced by
about 3 dB. This corresponds to the di!erence between typical passenger vehicles (50 kN)
and loaded freight vehicles (100 kN). In contrast, rolling noise due to roughness is relatively
insensitive to variations in the wheel load, changing by only 0)7 dB between 50 and 100 kN
due to a change in contact sti!ness.

7. CONCLUSIONS

A numerical model has been developed to predict the wheel/rail dynamic interaction due
to wheel-#at excitation. The form of the relative displacement excitation between the wheel
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and rail di!ers from the pro"le of the wheel #at due to the "nite curvature of the wheel. To
allow for the non-linear contact spring, and the possibility of loss of contact between the
wheel and the rail, a time-domain model is required. For this, simpli"ed dynamic models of
the wheel and the track are used with a non-linear model of the contact spring between
them. Results have been compared with published measurement data and shown to be in
good agreement. For a newly formed wheel #at, of depth 2 mm and length 86 mm, loss of
contact is found to occur for speeds above 30 km/h. For a rounded #at of the same depth
but overall length 121 mm the speed at which loss of contact "rst occurs increases to about
50 km/h. At higher speeds a second loss of contact occurs after the initial impact.

In order to predict the consequent noise radiation, the wheel/rail interaction force
is transformed into the frequency domain, and then converted back to an equivalent
roughness spectrum. This spectrum is used as the excitation to a linear, frequency-domain
model of wheel/rail interaction to predict the noise. This hybrid approach has been shown
to be adequate by comparing direct and hybrid calculations for a wheel with a single, lightly
damped resonance.

As the train speed increases, the force spectrum and consequently the noise radiation,
contains greater amplitudes at high frequencies and the overall noise level due to wheel #at
excitation increases with the train speed < at a rate of roughly 20 log

��
< once loss of

contact occurs. This di!ers from rolling noise due to roughness excitation which generally
increases at 30 log

��
<. The noise from #ats of depth 1 and 2 mm exceeds that due to typical

roughness on tread-braked wheels and good-quality track for all speeds up to at least 200
km/h. The results do not show a critical speed above which the level remains constant, as
suggested by VeH r et al. [4].

As the wheel load increases, the noise from wheel #ats increases. The di!erence between
a load of 50 kN, typical of passenger stock, and 100 kN, typical of loaded freight vehicles, is
about 3 dB. In contrast, the rolling noise due to roughness is relatively insensitive to wheel
load.
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APPENDIX A. WHEEL CENTRE TRAJECTORY FOR AN IDEALIZED ROUNDED FLAT

For a region of the wheel surface that is small compared with the wheel radius, a round
wheel can be represented approximately by a quadratic function. A #at portion of the wheel
surface therefore has a pro"le height, that is the di!erence between the actual pro"le and the
perfectly round wheel, which is quadratic with the same curvature as the wheel but in the
opposite direction, see equation (3).

Consider a rounded wheel #at of depth d, and overall length l. The corresponding pro"le
height is shown schematically in Figure A1, with an indentation shown as positive and
downwards. In the region between z

�
and z

�
the wheel surface is #at, so that the pro"le

height has the same curvature as the wheel. Between z"0 and z
�
and between z

�
and

l a transition is de"ned by a quadratic function such that the gradient is continuous.
From these assumptions, the wheel pro"le depth can be written as
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where z"z
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"l/2 is the point at the centre of the #at, z"z
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Figure A1. Idealized &&rounded #at'' pro"le.
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Figure A2. Rolling of a wheel on an idealized &&rounded #at'' pro"le.
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These can be rearranged to give
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Provided that the #at is short compared to the wheel radius, the same excitation of the
wheel/rail system occurs whether the pro"le x

�
is applied as an indentation on the rail

surface or on the wheel. By considering it to be on the rail, this allows the wheel centre
trajectory to be determined more readily, as follows.

As a round wheel rolls over a rail with the pro"le x
�
, the wheel surface and the rail pro"le

share a common tangent, see Figure A2. When the contact is at a distance z along the rail,
the gradient of this tangent is
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and the wheel centre is located at
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From equations (A4) and (A7), when the contact point is at z " z
�
, the wheel centre is at z

�
" z

�
, at which point the contact jumps to z

�
. The height of the wheel centre is thus given by
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Upon rewriting this in terms of z
�
(from equation (A7)),
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and, from equation (A5), the wheel centre trajectory can be written as
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